Integrated Reservoir Study for Designing CO$_2$-Foam EOR Field Pilot

M. Sharma*, Z. P. Alcorn#, S. Fredriksen#
M. Fernø# and A. Graue#

* The National IOR Centre of Norway, University of Stavanger
Department of Physics and Technology, University of Bergen
Outline

- Pilot Program
- Field Overview
- Laboratory Studies
- Reservoir Modelling & Simulation
- Conclusion
Pilot Program

OBJECTIVE

Cost-effective roadmap for mobility control CO\textsubscript{2} EOR implementation on Norwegian Continental Shelf through onshore field trials in Texas, USA

- Foam for Mobility Control

\textit{Gravity segregation
Reservoir heterogeneity
Viscous instability}
Multi-scale Approach
Outline

- Pilot Program
- Field Overview
- Laboratory Studies
- Reservoir Modelling & Simulation
- Conclusion
Field Overview

- Mature carbonate reservoir
 - Remaining oil saturation: 30 - 40%

Historical Production

- **Infill Drilling**
- **CO₂ Injection**
- **CO₂ breakthrough**

Legend

- Oil Rate (STB/D)
- Water-cut (%)
- Gas-Oil Ratio (Mscf/STB)

Stages

- Primary
- Secondary
- Tertiary
Pilot Site

- Focus on well pair I1 - P5
 - Part of 40-acre pattern
 - Short interwell distance
 - Representative geology
 - CO₂ breaks through within a year
Outline

- Pilot Program
- Field Overview
- Laboratory Studies
- Reservoir Modelling & Simulation
- Conclusion
Laboratory Studies

- Steady-state foam rheology

\[\text{Foam quality, } f_g = \frac{V_{\text{gas}}}{V_{\text{gas}} + V_{\text{liquid}}} \]

Laboratory Studies

- Foam quality scan

Fixed Total velocity, Varying Foam quality

- Gas velocity
- Liquid velocity
- Pressure gradient (psi/ft)
- Apparent Viscosity, cP

- High quality
- Low quality
Foam Model

- Empirical model

\[k_{rg}^f = k_{rg}^{nf} \times FM \]

\[FM = \frac{1}{1 + fmmmob \times \left(0.5 + \frac{\arctan[epdry(S_w - fmdry)]}{\pi} \right)} \]

Gas permeability in **presence** of foam

Gas permeability in **absence** of foam

Moobility Reduction Factor
Foam Model

- Parameters for pilot-scale simulation

![Diagram showing apparent viscosity vs foam quality with data points and an empirical model curve.]

- $fmmob = 180$
- $fmdry = 0.4$
- $epdry = 10000$
Outline

- Pilot Program
- Field Overview
- Laboratory Studies
- Reservoir Modelling & Simulation
- Conclusion
Reservoir Characterization

- Available data
 - Petrophysical well logs
 - RCA (porosity, permeability, Sw)
 - Core photo (for 1 well in pilot area)
- Cyclical sequence of carbonate rocks
 - Consists dolostones, packstones and grainstones
- Geologic framework based on flow zones and cyclicity
Geologic Model

- Spatial distribution of petrophysical properties using stochastic simulation

85,000 active cells
50 ft x 50 ft areally

Permeability
PVT Model

- PR EoS (8 components) tuned for available PVT data

*Circle represents Measured data, Line represents EoS calculation
Simulation Model

Geomodel

PVT Model

Relative Permeability

Foam Model

Well Inflow

Local Grid Refinement
Historical Water Injection

- BO Model (Includes peripheral injectors)
- Focus on updating volumes, and interwell permeability
Waterflood Match: Cum Oil Produced

- Extended Model
 - Base
 - Observed
 - HM

- Graphs for P6 (l1), P1, P3, P4, P5
CO₂ Injection Simulation

- 4 years of CO₂ injection
 - Gas b/t in all pilot producers

- Compositional model
 - Composition based on PVT report

- Initialization from HMed waterflood
 - Pressure and Saturation (O/W)

- History matching in progress...
Outline

- Pilot Program
- Field Overview
- Laboratory Studies
- Reservoir Modelling & Simulation
- Conclusion
Summary

- Foam behaviour at core scale captured using fit-for-purpose lab studies and models
- An integrated approach for reservoir modelling and simulation allows to incorporate all available data

Looking ahead
- Calibrate model for CO$_2$ injection period
- Baseline survey
- Optimal injection strategy
Acknowledgements

We acknowledge the Research Council of Norway CLIMIT program for financial support under grant number 249742 - CO₂ Storage from Lab to On-Shell Field Pilots Using CO₂-Foam for Mobility Control in CCUS and the industry partners; Shell E&P, TOTAL E&P and Statoil Petroleum AS.

We also acknowledge the Norwegian Metacentre for High Performance Computing (NOTUR) for support to perform this work on the Abel Cluster, University of Oslo.
Integrated Reservoir Study for Designing CO$_2$-Foam EOR Field Pilot

M. Sharma*, Z. P. Alcorn#, S. Fredriksen#
M. Fernø# and A. Graue#

* The National IOR Centre of Norway, University of Stavanger
Department of Physics and Technology, University of Bergen
Waterflood Match: Water-cut

L12

Base

HM

Observed

L14

L21

L25

L32
Waterflood Match: Permeability change

Layer - 4
Base PermX
PermX Change

Layer - 7

Layer - 8
Waterflood Match: Permeability change

Layer - 10

Layer - 16

Layer - 19

Base PermX

PermX Change
Reservoir Pressure on higher side!
Reservoir Setup

- 2 zones because of structural tilting / seal breach event:
 - MPZ (Main Pay Zone)
 - Primary & Secondary recovery
 - ROZ (Residual Oil Zone)
 - Large amount of immobile oil (20-40%)

Zones differ in fluid composition
Well Connectivity

** from start of CO2 injection: Oct 13
** from start of CO2 injection in L-13: Jan 16